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LETTER TO THE EDITOR 

Lorentz invariance of the quantum Hall effect and the 
finite frequency effects 
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Agricultural Road, Vancouver, BC, Canada+ 
§ Max-Planck-Institut fur Festkorperforschung, Hochfeld Magnetlabor, 166X. F-38042, 
Grenoble, France 

Received 25 October 1989 

Abstract. It is shown that the macroscopic equations describing the quantum Hall effect are 
Lorentz invariant. The influence of finite frequency on the symmetries underlying the QHE 
is studied and the role of the polarisation currents in the plateau regime is discussed. 

In the theory of continuous media (Landau and Lifshitz 1960) the induced charges and 
currents are linearly connected with electric and magnetic fields: 

where j ,  is the current, F is the electromagnetic field strength tensor, and ZPup are 
the coefficients. The relativistic invariance is preserved if the coefficients ZpUp form a 
constant tensor. In D + 1 space-time dimensions, the only constant tensors are the 
metric tensor g,u, and the totally antisymmetric (D + 1)-component tensor E, ,  . . . . In 
3 + 1 dimensions, it is impossible to construct a constant three-component tensor out of 
gPy and E , , , ~ ~ ;  therefore the 3~ macroscopic electrodynamics is not Lorentz invariant. 
However, in 2 + 1 dimensions such a tensor may exist: CpVp = constant x E , , ~ .  

We will show here that this may take place in a two-dimensional electron gas under 
quantum Hall effect (QHE) conditions (for a review on QHE see Prange and Girvin 1986). 
Namely, we show that the currents and the fields in the QHE are connected by a (2 + 1)- 
dimensional vector equation, equation (l), where 

Here v is the filling factor of the Landau levels and a is the fine structure constant. 

j ,  = ~ , L V P F v P  (1) 

?P 

q I Y P  = V&E,vp. ( l a )  

j l  = vaE, (2) 
j ,  = -vaEl (3) 
j o  = vaB3. (4) 

(4a) 

In the QHE, the currents and fields are connected as follows: 

Equations (2) and (3) are Ohm’s law, and equation (4) is the differential form of 

Q =  / j o ( x I , x , )  = v ~ j ~ , ( X 1 , X , )  = V ~ Q  

where @ is the magnetic flux. Physically it reflects the fact that in a non-dissipative 
medium the electrons are ‘glued’ to magnetic force lines (the Faraday law). 
$ Present address. 
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Let us discuss now the time evolution of currents and fields in a QHE situation, figure 
1. An axially symmetric fluctuation of the magnetic flux 6@(t ,  r) will drive a charge 
density fluctuation 6n(t, r )  which, in turn, will create a radial electric field E(t ,  r ) .  Finally 
a magnetic moment SM(t ,  r )  will be added to the initial magnetic field, due to the 
azimuthal Hall currents: j p ( t ,  r )  oz E,H,. This may result in an oscillatory process, i.e. in 
a periodic transformation of the magnetic energy into the kinetic energy of the Hall 
currents and vice versa, if the energy stored in such a fluctuation will dissipate (due to 
the Joule heat produced by the radial currents W cc Jj,E,) slowly with respect to the 
oscillation period. 

To show this we start with the continuity equation 

- e d6n/dt  + div Sj  = 0 ( 5 )  

j l  = allEl .  (6) 

( 5 a )  

(7) 

(8) 

where the current is defined as 

In the QHE, a,, = 0 and equation ( 5 )  reads 

- e d 6n/d t = div( oxy (SE X h ) )  = -axy h curl 6E + (6E X h)grad oxy. 

Using the Faraday law 

c curl E = -dB/dt 

- ed6n/d t  = -(a,/c)(dSB/dt) + (6E X h )  grad U,).. 

SB = -(ec/a,)6n (4b) 

we arrive at 

Neglecting the non-linear terms we arrive at the desired proportionality between the 
magnetic flux and the charge density 

It follows, from equation (4b), that the vanishing of the diagonal components of the 
conductivity tensor, a,, = 0, ensures that the Hall conductivity oxy, the only material 
parameter entering the linearised equations, is a constant of motion. Moreover, the QHE 
fixes this constant at a universal value ie2/h (where i is an integer, or a simple fraction 
p / q ) ,  thus giving a universal relationship between the charge density and the magnetic 
flux fluctuations. Markiewicz (1986) outlined the idea that the flux conservation in 
QHE is analogous to the magnetic flux quantisation in superconductors. 

Equations (2)-(4) could be cast into a Lorentz invariant tensorial form: 

j ,  = v (e2 /h ) f ,  (9) 
wheref, is a vector dual to the field strength tensorfCf:f, = ~ . ~ ~ f P y .  Equation (9) is the 
only local covariant linear equation in 2 + 1 dimensions because f, is the only vector 
that can be constructed fromf,@ and constant tensors gap and E , ? ~ .  

The Lorentz symmetry depends crucially on the absence of diagonal components in 
the conductivity tensor in the QHE. The exactness of this symmetry, therefore, is limited 
by the ‘degree of vanishing’ of ox,. In what follows we identify a phenomenon that 
destroys the Lorentz invariance: polarisation currents appearing at finite frequencies. 

The problem of the finite frequency response in the quantum Hall effect regime 
is attracting growing attention, since Pepper and co-workers reported (Pepper and 
Wakabayashi 1983; for a review see Pepper 1985) that the QHE plateaus may be destroyed 
by application of a relatively low frequency. Goldberg and co-workers have attributed 
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Figure 1. The time evolution of currents and fields 
in a QHE situation. ( a )  An axially symmetric fluc- 
tuation of the magnetic flux 6Q(t, r ) ;  ( b )  a charge 
density fluctuation an(?, r ) ;  ( c )  a radial electric 
field E(?, r ) ;  (d )  the azimuthal Hall currents: 
&(t,  r )  E,H,; ( e )  a magnetic moment 6M(t ,  r )  
created by the azimuthal currents. 

Figure 2. An electron experiences time dependent 
acceleration F(t),” on the arcs (approximated by 
straight lines) AB and CD, and acquires a drift 
velocity ud along the electric field as defined in 
equation (10). 

the frequency dependent effects to the coupling between the ~ D E G  and the gate material. 
Recently, Lee et a1 (1987) have shown that the effect is genuine, rather than due to 
the capacitative losses. They observed an almost linear frequency dependence of the 
diagonal conductivity minima and interpreted their results within the percolation picture 
(Iordansky 1982, Luryi and Kazarinov 1983, Joynt 1985, Apenko and Lozovik 1985, 
Rosenstein and Vagner 1989). 

Vagner and Bergman (1987) have shown that in contrast to Re a,, vanishing in the 
plateau region, the imaginary part of the diagonal conductivity remains finite, due to 
the polarisation currents, and is linearly dependent on frequency: Im a,, (o/oc)axy. 
The origin of the polarisation currents, contributing to Im a,,, is shown in figure 2. An 
electron experiences time dependent acceleration on the arcs (approximated by straight 
lines) AB and CD, and acquires a drift velocity along the electric field 

and a corresponding current: jp = nevp = nmc2E/H2 in the direction of the time-varying 
electric field E(t). This contributes to the diagonal conductivity 

a,, = iwnmc2/H2 = i ( o / % > a x y .  (11) 
It was outlined by Vagner and Bergman (1987) that the wave propagation in a 

superlattice with the 2~ electron gas in the quantum Hall regime may be used to study 
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the influence of polarisation currents on the exactness of the plateaus, under conditions 
of helicon resonance. Helicon waves are caused by the Hall currents (Lifshitz and 
Pitaevskii 1981) and can be thought of essentially as a RF Hall effect, so plateaus in the 
helicon resonance, concomitant with the plateaus in oxy, should appear. Wendler and 
Kaganov (1987) and Narahari Achar (1988) studied the absorption of the helicon wave 
in a superlattice under QHE conditions. In a superlattice with a finite k,-dispersion 
(minibands), temporal dispersion will cause dissipation and inclusion of the polarisation 
currents will result in non-local effects (Vagner 1977, 1982). 

To summarise, we looked upon the known properties of z~ electron gas under strong 
magnetic fields from a novel point of view: the underlying symmetries of the macroscopic 
Maxwell equations. We found that in the plateau regions this system exhibits Lorentz and 
scaling symmetries, and estimated their exactness. We identified a possible symmetry 
breaking mechanism-polarisation currents in the AC QHE-and outlined how they can 
be measured in the helicon resonance in a superlattice with a 2~ electron gas. 

It is amusing that the only mathematically possible current-field interrelation exhibit- 
ing relativistic invariance, equation (l), for D s 3 ,  has a solid state realisation: the 
quantum Hall effect. This remarkable system is, therefore, an example of a relativistic 
medium. 

We are grateful to Professor Haidu, Professor Pepper, Professor Weinberg and Pro- 
fessor Wyder for their interest in this work. One of us (BR) acknowledges the hospitality 
at the High-Field Magnetolab, Grenoble, and partial financial support by the Robert A 
Welch Foundation and NSF Grant PHY 8605978. 
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